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SUMMARY 

/ 5-6 /0  
The problem of t h e  t r anspor t  of thermal r ad ia t ion  through an absorbing 

medium between p a r a l l e l  w a l l s  held a t  f ixed  d i f f e r e n t  temperatures i s  con- 
s idered.  The method of so lu t ion  i s  based on a procedure introduced by Yvon 
i n  the  ana lys i s  of monoenergetic neutron t ranspor t  and employs double spher i -  
c a l  harmanics expamions of t he  s p e c i f i c  i n t ens i ty .  Formulas f o r  the  energy 
t r anspor t  between t h e  wal ls  and t h e  temperature d i s t r i b u t i o n  i n  the  medium 
a r e  obtained f o r  a simple approximation. Numerical results a r e  obtained f o r  
a more complicated approximation. The results a re  compared t o  previously 
published values.  

A v - t & o n  

INTROIXJCTION 

There are many s i m i l a r i t i e s  between the mathematical descr ip t ion  of t h e  
t r a n s f e r  of r a d i a t i o n  i n  a gas and the  t r a n s f e r  of neutrons i n  a medium. 
These have been discussed i n  reference 1, page 37. If c e r t a i n  s implifying 
assumptions a r e  made f o r  both the  neutron and t h e  r ad ia t ion - t r ans fe r  equation, 
then t h e  two t r a n s f e r  equations have the  same form. 

For t h i s  reason the  methods developed e i t h e r  f o r  r ad ia t ion  or neutron 
ana lys i s  can be appl ied  t o  the  o ther  f i e l d .  One procedure widely used i n  
neutron t r a n s p o r t  ana lys i s  i s  the  so-ca l led  double sphe r i ca l  harmonics method 
introduced by Yvon ( r e f .  2 ) .  

Yvon's method i s  a v a r i a t i o n  of t he  well-known, fu l l - range  sphe r i ca l  
harmonics approximation (see, e .g . ,  ref. 1 o r  r e f .  3 ) .  
so lu t ion  the  angular d i s t r i b u t i o n  of t h e  i n t e n s i t y  i s  expanded i n  a s e r i e s  of 
Legendre polynomials. The fu l l - r ange  r e s u l t s  are known t o  be r e l a t i v e l y  
accurate  i n  t h e  i n t e r i o r  of a l a r g e  homogeneous medium where the  s p e c i f i c  
i n t e n s i t y  i s  genera l ly  a slowly varying funct ion of angle.  A t  boundaries 
between d i f f e r e n t  media a d i scon t inu i ty  i n  the  i n t e n s i t y  occurs, and it i s  a t  
such po in t s  t h a t  l a r g e  e r r o r s  may arise. This i s  due t o  the  d i f f i c u l t y  i n  
expressing a discontinuous func t ion  i n  terms of a s e r i e s  of continuous 
func t ions .  

I n  t h i s  fu l l - r ange  



To improve the  convergence of t h e  so lu t ion  a t  boundaries, Yvon followed 
the  procedure of considering sepa ra t e ly  the  components of t he  r a d i a t i o n  
t rave l ing  i n  the  pos i t i ve  and negative d i r ec t ions .  Each component i s  expanded 
i n  an independent series of Legendre polynomials. This allows t h e  so lu t ion  t o  
have d iscont inui t ies  a t  the  boundaries as demanded by the  boundary condi t ions.  
Thus the double spher ica l  harmonics so lu t ion  has been found t o  be more accu- 
rate than the  fu l l - range  r e s u l t  near d i s c o n t i n u i t i e s  i n  a medium, o r  when 
applied t o  o p t i c a l l y  t h i n  media. Yvon's method, as presented i n  t h i s  paper, 
i s  appl icable  only t o  one-dimensional problems. 

Both Shiff  and Zier ing ( r e f .  4 )  and Bengston ( r e f .  5 )  have developed 

It i s  found, f o r  example, 
Yvon's method and appl ied it t o  problems i n  neutron t r anspor t .  
t he  accuracy has been inves t iga ted  i n  some d e t a i l .  
t h a t  for Milne's problem the  double spher ica l  harmonics approximation gives 
b e t t e r  r e s u l t s  than the  fu l l - range  approximation of comparable complexity. 
The extension of the double expansion procedure t o  two-dimensional problems 
has a lso been considered by Shiff  and Zier ing  ( r e f .  6 ) .  

I n  reference 4 

It i s  the  purpose of t h i s  paper t o  apply Yvon's method t o  t h e  problem of 
the  plane absorbing l a y e r  of grey gas between absorbing and emi t t ing  walls a t  
f ixed  d i f f e r e n t  temperatures. The w a l l s  are assumed t o  r ad ia t e  i s o t r o p i c a l l y  
and t o  have an abso rp t iv i ty  of u n i t y  ( i . e . ,  black w a l l s ) .  F i r s t ,  reduct ion 
of the in t eg ro -d i f f e ren t i a l  equation descr ibing t h e  physical  s i t u a t i o n  t o  a 
s e t  of ordinary d i f f e r e n t i a l  equations i s  i l l u s t r a t e d .  The boundary condi- 
t i o n s  a t  the  w a l l s  must be introduced t o  complete the  so lu t ion  of these  
d i f f e r e n t i a l  equations.  F ina l ly ,  ca l cu la t ions  giving such q u a n t i t i e s  as the  
energy flux across  the  gas s l a b  and t h e  temperature d i s t r i b u t i o n  through t h a t  
s l a b  a re  presented and compared with previously published values .  

SYMBOLS 

A+ , B+ coe f f i c i en t s  i n  equation ( U 8 )  

A-,B- coe f f i c i en t s  i n  equation (~19) 

"i coef f i c i en t  i n  equation (30) 

dn coe f f i c i en t  i n  equation (15) 

fn,h, coe f f i c i en t s  i n  equation (16) 

gn 
an 
a i  
- 

I(S,p) s p e c i f i c  i n t e n s i t y  per u n i t  area, t i m e ,  s o l i d  angle 

I n ( ! , )  coe f f i c i en t s  i n  the  series expansion of I (6 ,p )  ( see  eqs.  (7)  and 
(8) 1 

k coe f f i c i en t  i n  exponent ( see  discussion preceding eq. (13) ) 
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geometric thic3mess of plane  l aye r  (see f i g .  i) 

Legendre polynomial of the  f i r s t  kind of order n 

rate of energy t ranspor t  per u n i t  area 

r e f l e c t i v i t y  

temperature, absolute  

nonsingular p a r t  of t he  Legendre function of the  second kind of 
order n 

geometric depth i n  absorbing layer  

emission funct ion (see eq. ( 3 5 ) )  

emis s i v i  t y  

angle between r a y  and normal t o  surface ( see  f i g .  1) 

l o c a l  absorption coef f ic ien t ,  per  u n i t  mass 

o p t i c a l  depth i n  absorbing l a y e r  (dE = PK dx) 

l o c a l  dens i ty  of absorbing medium 

Stefan-Boltzmann constant 

dimensionless form of emission funct ion ( see  eq. (36))  

Subscr ipts  

L 
L evaluated a t  5 = EL =l pK 

N m a x i m u m  value of n i n  expansion 

n 

o evaluated a t  E = 0 

order of Legendre.polynomia1 o r  funct ion 
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Superscripts 

+ right-going ( 5  -increasing) quantity 

- left-going (5-decreasing) quantity 

GENERAL SOLUTION 

Integro-Differential Equation 

The one-dimensional, time-independent, radiation-transfer equation for 
a grey gas in local thermodynamic equilibrium is normally written (see ref. 1) 
as 

I J T ( x ) ~  
r; 

dl(x rJ-) + I (x ,p )  = 
Dic & 

The specific intensity, I(x,p), is the energy flux per unit area, time, 
and solid angle, at point x in direction p. (For a more detailed discus- 
sion of specific intensity consult either reference 1 or reference 7.) 
symbols T, IS, and x are, respectively, the local temperature, Stefan- 
Boltzmann constant, and the geometric length. Mass absorption coefficient 
and density are designated by 
between the direction of radiation and the x axis (refer to fig. 1 for the 
coordinate system and the geometry). 

The 

ic and p, and 8 (= cos-' p)  is the angle 

The optical depth 5 of the medium is defined in terms of p, fc, and x 
by the following equation. 

Equation (1) can then be written in terms of the optical depth as 

The above formulation of the grey gas radiation-transfer equation is 
based on the assumption of local thermodynamic equilibrium. Another formula- 
tion, corresponding to perfect isotropic scattering, is shown in reference 1, 
page 32, to be mathematically equivalent. This equation is 

There are two unknowns in equation (2), T(5) and I ( E , P )  - In equation (3)  
the only unknown is 
equation. 

I(E,p), and the equation is now an integro-differential 
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EquatTon ( 3 )  has the  sax? f o m  as  the energy Independent, one-dimensional 
neutron-transport  equat ion f o r  a nonabsorbing medium. 
appl ied  t o  equation ( 3 ) .  
d i f f e r e n t  f i x e d  temperatures. 
i n t e n s i t y  
s ides  of equat ions (2 )  and (3 ) .  

Yvon's method w i l l  be 
I n  the  problem t r ea t ed  here, t he  w a l l s  are held a t  

The mathematical r e l a t i o n  between the  s p e c i f i c  
T ( 5 )  i s  obtained by equating t h e  r i g h t  I ( 6  ,w )  and t h e  temperature 

Applicat ion of Yvon's Xethod 

I n  t h e  app l i ca t ion  of Yvon's method the componenis of t h e  r a d i a t i o n  
t r a v e l i n g  i n  t h e  pos i t i ve  and negative d i rec t ions  a r e  considered separa te ly .  
Each of these  components i s  then expanded i n  a s e r i e s  of Legendre polynomials1 
and s u b s t i t u t e d  i n t o  t h e  in t eg ro -d i f f e ren t i a l  equation. A set of ordinary 
d i f f e r e n t i a l  equations i s  obtained. The following nota t ion  w i l l  be used t o  
d i f f e r e n t i a t e  between the  pos i t i ve  and negative components of t h e  r ad ia t ion .  

It w i l l  be necessary t o  use one of the recurrence formulas for Legendre 
polynomials as w e l l  as t h e  or thogonal i ty  conditions f o r  the  polynomids which 
apply t o  the  ranges 0 - < p - < 1 and -1 - < CL 5 0 .  These are, respec t ive ly ,  

where Pn(y) i s  tl-. Legendre polynomial of order n with argument y and 
where 6, i s  t h e  Kronecker d e l t a  defined as follows. 

~ ~~ ~~~ - - 

'Yvon's method i s  a l s o  c a l l e d  t h e  double sphe r i ca l  harmonics method 
although t h e  Legendre polynomials a r e  used i n  t h i s  paper i n s t ead  of t h e  
s i h e r i c a l  harmonics. For cases where 6' i s  the only angle var iab le ,  t he  
sphe r i ca l  harmonics and the  Legendre polynomials a r e  proport ional .  
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Equations (6)  are obtained d i r e c t l y  from the  normal or thogonal i ty  
formulas f o r  t he  Legendre polynomials by a simple t ransformation of va r i ab le s .  

The procedure by which a se t  of ordinary f i r s t - o r d e r  d i f f e r e n t i a l  
equations i s  obtained from t h e  in t eg ro -d i f f e ren t i a l  equation has been 
included i n  o ther  papers (refs.  2, 4, and 5) and, therefore ,  will+be o n l y  
b r i e f l y  out l ined  below. The general  method i s  f i r s t  t o  expand 
I-( E,p) i n  i n f i n i t e  s e r i e s  of the  polynomials Pn( 2p - 1) and Pn( 2p + 1). 
These se r i e s  are then subs t i t u t ed  i n t o  equat ion (3)  and a f te r  some rearrange-  
ment it i s  possible  t o  equate the  coe f f i c i en t s  of l i k e  terms i n  the  series 
which appear on both s ides  of+the r e s u l t i n g  equation. 
t a i n  f i r s t  der iva t ives  of Therefbre, by equat ing each 
p a i r  of terms of t he  series,  we ob ta in  one ordinary d i f f e r e n t i a l  equation. 

I (E,p) and 

The coe f f i c i en t s  con- 
I n  ( E )  and I n - ( ( ) .  

The expansions of the s p e c i f i c  i n t e n s i t i e s  are 

The (2n + 1) f a c t o r  i s  included i n  equations (7)  and (8) f o r  convenience i n  
l a t e r  manipulations. 

Equations (7)  and (8) are subs t i t u t ed  i n t o  equation ( 3 ) .  Employing the  
orthogonality r e l a t i o n s  (eqs.  (6)  ) and the  recurrence formula (eq.  ( 5 ) ) ,  the  
following equations are obtained. 

n 

I1 

n - , 

n 

It i s  t o  be understood t h a t  

depth 5 .  The coe f f i c i en t s  I n  and 1,- a r e  taken t o  be zero when n < 0. 

6 
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The following two d i f f e r e n t i a l  equations are obtained by equating t o  zero the  
Pli(2p - 1) and Pn(2P -t 1) in equations (9) and (10). . c o e f f i c i e n t s  of 

620 i s  t h e  Kronecker d e l t a  as defined previously.  

I n  the  double PN approximation it i s  assumed t h a t  I, and I n  a r e  
This i s  the  same as  assuming t h a t  the expansions f o r  

+ - 
zero f o r  
I ( 5 , ~ )  and I-(E,p) (eqs.  (7)  and (8 ) )  contain only ( N  + 1) terms. For the  
general  case t h i s  i s ,  of course, an approximation. 

n > - N + 1. + 

The problem now cons is t s  of solving the s e t  of 2(N + 1) coupled ordinary 
d i f f e r e n t i a l  equation, represented by equations (11) and (12) ,  subjec t  t o  
s p e c i f i e d  boundary conditions.  F i r s t ,  however, so lu t ions  of the  d i f f e r e n t i a l  
equations are obtained which contain undetermined constants.  The boundary 
conditions are used l a t e r  t o  determine these constants.  

Charac te r i s t ic  De terminan t 

Some information about the  solut ions of equations (11) and (12)  can be 
obtained from the  c h a r a c t e r i s t i c  determinant f o r  these  equations without 
a c t u a l l y  solving f o r  t he  roots  of t h a t  determinant. If the  usual exponential  
so lu t ion  e k  
c h a r a c t e r i s t i c  determinant i s  obtained. 

i s  s u b s t i t u t e d  i n t o  equations (11) and (12), the  following 

l + k  -1 k 0 0 0 ... 
-1 1 - k  0 k 0 0 

k 0 6 + 3k 0 2k 0 

0 k 0 6 - 3k 0 2k 

0 0 2k 0 10 + 5k 0 

0 0 0 2k 0 10 - 5k 

= 0 (13) 
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+ 
The equations were arranged in+order of increasing - n with t h e  In and 

1,- equations a l t e r n a t i n g ,  t h e  In before t h e  In . 
By elementary operations equation (13) can be reduced t o  

k2 

7 + 2k 

1 

2k 

0 

0 

1 

7 - 2k 

0 

2k 

0 

2k 

0 

10 + 5k 

0 

3k 

0 

2k 

0 

10 - 5k 

0 

0 

0 

3k 

0 

1 4  + 7k 

... 

= o  (14)  

Equation ( 1 4 )  shows the re  are two zero roo t s  of t h e  c h a r a c t e r i s t i c  equation 
(13) .  Zero i s  not a roo t  of t h e  determinant i n  equation (14)  as can be 
demonstrated by s u b s t i t u t i o n  of k = 0 i n t o  t h e  determinant. Thus, t h e r e  are 
only two  zero roo t s  of equation (13) and these  have been f a c t o r e d  i n  
equation ( 1 4 ) .  

Each row of the  determinant i n  equation ( 1 4 )  can now be divided by 
Each element of t he  r e s u l t i n g  determinant i s  of t h e  form 

k. 
L e t  A = l/k. 
Aij  + hCij where C i j  are the  elements of a p o s i t i v e  d e f i n i t e  matrix and 
A i -  
regerence 8 a l l  t h e  roo t s  Ai a r e  real. 

a re  t h e  elements of a real symmetric matrix.  Then by theorem 44 of 

Solut ion of t he  D i f f e r e n t i a l  Equations 

It i s  now known t h a t  each s o l u t i o n  of t h e  2(N + 1) d i f f e r e n t i a l  equations 
( i . e . ,  In') w i l l  cons i s t  of a constant and a l i n e a r  t e r m ,  and 2N 
terms with real exponents. The exponential  terms are of t he  form 

exponential  

and the constant and l i n e a r  so lu t ions  are of t h e  form 

fni + hn'k 

+ + 
where the constants 

A i .  

dn-, fn-, and hnf are funct ions only of t h e  p a r t i c u l a r  

The so lu t ion  for each of t h e  2 ( N  + 1) values of In' w i l l  be of t h e  form 

8 



L 

i=i 

In+the  doubie PN approximation there  a re  [ 2 ( N  + 1)12 constants  ( i . e . ,  
dn', fn-, and hn-) and 2 N  values of t he  exponents A i  t o  be determined. 
The f i r s t  s t e p  i n  the  so lu t ion  i s  t o  subs t i t u t e  equations (15) and (16) i n t o  
t h e  d i f f e r e n t i a l  equations.  Because of t he  coupling i n  t h e  equations,  enough 
r e l a t i o n s  among the  constants  dn', fn', and hn' are obtained such t h a t  A i  
and all but  2(IV + 1) of the  constants  can be determined. The d e t a i l s  of t h i s  
so lu t ion ,  which i s  f a i r l y  complex a lgebra ica l ly ,  a r e  contained i n  appendix A. 
The boundary condi t ions are used t o  determine t h e  remaining 2(N + 1) con- 
s t a n t s .  Application of t he  boundary conditions i s  discussed i n  the  next 
sec t ion .  

+ 
The prfcedure used i n  appendix A t o  obtain A i  and t h e  constants dn-, + 

fn-, and hn- i s  somewhat d i f f e r e n t  from the  methods employed i n  references 2, 
4, and 5. The present  procedure, which i s  s imi la r  t o  t h a t  used i n  reference 3 
f o r  t h e  so lu t ion  of t h e  d i f f e r e n t i a l  equations obtained i n  t h e  fu l l - r ange  
sphe r i ca l  harmonics problem, appears t o  o f f e r  some reduct ion i n  the  complexity 
of t he  so lu t ion  f o r  higher approximations. This reduct ion i n  complexity 
results from t h e  use of t he  rFcurrence formulas f o r  t pe  Legendre polynomials 
t o  generate the  values of an- from t h e  preceding and dii-2. Also, t he  
use of t h e  recurrence formulas l eads  d i r e c t l y  t o  a polynomial (eq. A27)), t he  
r o o t s  of which a r e  the  2N values of t h e  exponents A i .  

+ 

APPLICATION OF BOUNDARY CONDITIONS 

The problem of the  plane absorbing l aye r  of gas between absorbing and 
emi t t ing  w a l l s  i s  t o  be considered. The w a l l s  are held a t  f ixed  d i f f e r e n t  
temperatures and are assumed t o  be black. This assumption involves no loss  
i n  gene ra l i t y  s ince  as shown, f o r  example, i n  reference 9, t he  so lu t ions  f o r  
t he  black w a l l  and the  grey w a l l  cases are re la ted .  Figure 1 shows t h e  
geometry and the  coordinate system. 

The i n t e n s i t y  of t h e  r ad ia t ion  from an i s o t r o p i c a l l y  r a d i a t i n g  black 
w a l l  a t  temperature T i s  aT4/rc. The walls  a r e  a t  5 = 0 and 6 = EL.  Then 

n 
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The l e f t  s i d e s  of equations (18) and (19) are not  funct ions of Therefore, 
the  terms In+(0) and I,-({L) must be zero f o r  11 > 1 since  Pn are func t ions  
of 

p. 

i-1 for  n - > 1. The boundary conditions are then- 

- -  7c - I&) 

+ 
so t h a t  2 ( N  + 1) equations i n  
boundary conditions provide the  co r rec t  number sf r e l a t i o n s  t o  evaluate  t h e  
2 ( N  + 1) as y e t  undetermined constants .  

In (0)  and In-(ET) are obtained. Thus t h e  

+ 
For i s o t r o p i c a l l y  r a d i a t i n g  walls, I (0 ,u )  and I-( tL ,p )  a r e  constants  

with respect t o  t h e  angle va r i ab le  
ob ta in  so lu t ions  t o  t h e  problem when 
p. I n  t h i s  case the  values of 
t i o n s  (18) and (19) and t h e  or thogonal i ty  r e l a t i o n s  f o r  t h e  Legendre poly- 
nomials. The physical  meaning of such boundary conditions and t h e i r  r e l a t i o n  
t o  w a l l  temperature has not  been inves t iga t ed  and w i l l  no t  be considered again 
i n  t h i s  paper. 

p. + It i s  mathematically poss ib l e  t o  

In+(0) and I ,-(~L) are determined from equa- 
I (0 ,u)  and I-(EL,u) are funct ions of 

PLANE ABSOFBING LAYER-ENERGY FLUX ANC TEMPERATURF: 

Energy Flux 

+ 
The p o s i t i v e  f lux q ( 6 )  and t h e  negative f l u x  

t o t a l  rates of energy t r a n s p o r t  pe r  u n i t  area i n  t h e  p o s i t i v e  and negative 
d i r ec t ions ,  r e spec t ive ly .  The expressions f o r  t hese  f luxes  i n  terms of t h e  
s p e c i f i c  i n t e n s i t i e s  are given i n  reference 10. They are 

q-(E) are def ined as t h e  

and 

io 



whore 
-the p o s i t i v e  x d i r e c t i o n  corresponds t o  q ( 5 )  > 0. 

q ( 5 )  i s  t h e  l o c a l  net. value of' the  er lerg~ f l u .  A Let energji i ' iog i r - i  

It i s  poss ib l e  t o  w r i t e  q'(5) as a f m c t i o n  of In+(E). S u b s t i t u t e  
equation (7) i n t o  equation (24) and l e t  
The or thogonal i ty  r e l a t i o n  (eq. (5) ) gives 

p = (1/2)[~1(2u - 1) + pO(2u - I)]. 

q+(EJ = "(IO+ + I+) 

and s i m i l a r l y  

d 5 )  = d10- 

q(5) = do + 11' 

and from equation (26) 
+ 

- 11-1  

1,- + 1 1 7  (29) 

Equations (~28) and (A7) through (A10) are subs t i t u t ed  i n t o  equation (29) t o  
g e t  t h e  f l u x  i+n terms of 
dn'(hi) = a i g n - ( h i ) ) .  

t + 
a i ,  gn , and h, (as def ined i n  appendix A, 

i=i 

Note t h a t  t h e  l i n e a r  t e r m  i n  equation ( 3 0 )  has disappeared. 
(A20), (A25), and (A26) are s u b s t i t u t e d  i n t o  equation (3O), t h e  term i n s i d e  
t h e  brackets  reduces t o  zero.  Therefore 

If equations 

Since ho+ i s  no t  a func t ion  of 5 ,  t he  value of t he  energy f l u x  i s  constant  
with r e spec t  t o  pos i t i on .  This i s  a condition t h a t  must be t r u e  f o r  t h e  exac t  
s o l u t i o n  and is ,  of course, des i r ab le  i n  any approximate s o l u t i o n  such as t h e  
one being considered here.  Note t h a t  %+ i s  a funct ion of both the  order  
of the approximation and t h e  boundary conditions. 

Temperature 

A t  a po in t  between t h e  walls, the  temperature and the  s p e c i f i c  i n t e n s i t y  
are r e l a t e d  by t h e  following equation: 

11 



Equation ( 3 2 )  follows from equations (1) and ( 3 ) .  
be evaluated: 

The l e f t  s ide  of (32)  can 

From equations ( 5 )  through (8) t h i s  i s  

It i s  customary t o  define a funct ion,  @ ( E ) ,  t h e  emission funct ion,  as 

Heaslet and F u l l e r  ( r e f .  9 )  have a l s o  introduced t h e  funct ion 
below. 

c p ( k )  defined 

The funct ion 
The usefulness of t he  funct ion q ( s )  i s  as follows. The problem i s  f i r s t  
solved and c p ( k )  c a l cu la t ed  f o r  black walls.  From t h i s  value of ($(I ; )  it i s  
then possible,  using the  method of reference 9, t o  ca l cu la t e  p ( ( )  f o r  t h e  
case with grey walls. This i s  equivalent  t o  having the  following boundary 
conditions:  

cp(  I ; )  can be considered as a normalized, dimensionless p (  5 ) .  

(38) 
+ 11 (0) = 0 

where c0 and cL a r e  the  e m i s s i v i t i e s  and ro and r L  are the  r e f l e c t i v i t i e s  
of the  l e f t  and r i g h t  walls, r e spec t ive ly .  

12 



This example, which involves only four  d i f f e r e n t i a l  equations and four  
unknowns, i s  i n t e r e s t i n g  s ince  it i s  simple enough t o  be solved i n  terms of 
an a r b i t r a r y  o p t i c a l  thickness ,  E L ,  of t he  absorbing l a y e r .  The d i f f e r e n t i a l  
equat ions a r e  

(1: + 31;) + 61, + = 0 
dE 

- d (1,- - Io-> + (Io- - Io+> = 0 
dE 

and t h e  boundary condi t ions are equations (20) through (23) with N = 1. 
mathematics lead ing  t o  the  so lu t ion  i s  lengthy bu t  s t ra ightforward.  The 
r e s u l t s  obtained a r e  

where q + ( O )  = aTO4 and q-( E L )  = uTL4, and 

(43) 

(44)  

The 



I 

The normalized f lux  i s  

4 +  
4 - - - 

- 5 *ho 
- 

For the  extreme values of kL,  t he  normalized f l u x  i s  

EL << 1 
- -q - 

Equation (46) has the  advantage of being a r e l a t i v e l y  simple expression f o r  
t he  temperature d i s t r i b u t i o n  wr i t ten  i n  terms of an a r b i t r a r y  o p t i c a l  th ick-  
ness.  It i s ,  of course, possible  t o  determine the  expression similar t o  
equation (46) f o r  a higher approximation; but t he  complexity of t he  algebra 
increases r ap id ly  with higher approximations. 

Double P5 Approximation 

Th i s  p a r t i c u l a r  approximation, which involves twelve d i f f e r e n t i a l  equa- 
t i o n s  and twelve unknowns, was chosen s ince it of fered  the  p o s s i b i l i t y  of a 
subs t an t i a l  increase i n  accuracy over t he  double P1 approximation. The 
equations and boundary conditions are equations (11) , (12), and (20) through 
( 2 3 )  with N = 5. The method of so lu t ion  follows t h a t  ou t l ined  i n  the  pre-  
vious sect ions.  Unlike the  previous example, the  problem w a s  not  solved i n  
terms of an a r b i t r a r y  o p t i c a l  thickness .  Instead,  the problem was solved on 
an e l ec t ron ic  computer f o r  d i f f e r e n t  s p e c i f i c  values of EL; therefore ,  only 
numerical r e s u l t s  are ava i lab le  f o r  t h e  double P5 approximation. 

Discussion of Results 

The normalized f lux ,  -q/[q-(kL) - q + ( O ) ] ,  f o r  t he  double P1 and the  
double P5 approximations i s  given i n  t a b l e  I f o r  d i f f e r e n t  values of EL. 
I n  reference 9 the  problem of the  plane absorbing l a y e r  was solved approxi- 
mately by an i n t e g r a l  equation approach; f luxes  and temperature d i s t r i b u t i o n s  
were obtained by an i t e r a t ive  procedure. The values of normalized f l u x  from 
reference 9 a re  also l i s t e d  i n  t a b l e  I f o r  comparison. The maximum d i f f e r -  
ence between any two comparable values i n  the  t a b l e  i s  less  than 2 percent .  

14 



Values of the  noryalized f l i n  a re  a l so  p lg t tcd  in figure 2, bUt because of 

curve i s  p lo t t ed ,  and it represents  a l l  t he  methods t o  within the  accuracy of 
t he  graph. 

* t h e  agreement among the  values ca lcu la ted  by the  d i f f e r e n t  methods, only one 

The values from the  double P5 approximation ca lcu la t ion  and those from 
the  i t e r a t i v e  ca lcu la t ion  agree p a r t i c u l a r l y  w e l l  over most values of 
except f o r  a s l i g h t  divergence a t  EL = 10. Therefore, one i s  encouraged t o  
assume t h a t  t he  values ca lcu la ted  are approximately cor rec t  s ince these  two 
methods, one a d i f f e r e n t i a l  equation method and one an i n t e g r a l  equation 
method, are qui te  d i ss imi la r .  

EL 

Figure 3 contains curves of ( ~ ( 6 )  vs.  !/EL f o r  t he  double PI, double 
P5? and i t e r a t i v e  ca lcu la t ions  f o r  values of EL from 0.1 t o  10.0 The values 
f o r  t he  double P5 and the  i t e r a t i v e  calculat ions a r e  i n  such close agree- 
ment t h a t  only one curve represent ing both is  p l o t t e d  i n  f igu re  3. The m a x i -  
mum d i f fe rence  between these two curves i s  approximately 1 percent.  It i s  
only necessary t o  p l o t  c p ( ~ )  f o r  values from kL/2 t o  kL since c p ( ~ )  i s  
antisymmetric about EL/2. The double P1 curve ( f i g .  3) represents  a cruder 
approximation and deviates  s l i g h t l y  from the other  curves. 

The agreement among the  three  methods i s  not  as good f o r  s m a l l  values of 
EL. Figure 4 i s  a curve of 
double P1 approximation i s  apparent ly  f a i l i n g  t o  give a reasonably accurate  
result. The double P5 r e s u l t  s t i l l  agrees t o  within 5 percent with the  
i t e r a t i v e  r e s u l t .  

cp(  E )  vs. E / E L  f o r  EL = 0.02. I n  t h i s  case the  

The temperature d i s t r i b u t i o n s  from the  double Ps approximation have 
a l s o  been compared with the  curves published i n  reference 11. The values f o r  
these curves were obtained from a numerical so lu t ion  of the i n t e g r a l  equation 
using a desk ca lcu la tor .  
double P5 c a l c u l a t i o n  agree t o  within the  accuracy t o  which the  curves i n  
reference 11 can be read. 

The values from reference 11 and those from the  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Calif . ,  Aug. 6, 1964 



APPENDIX A 

SOLUTION OF DIFFERENTIAL EQUATIONS 

LIrJEAR AND CONSTANT PART OF SOLUTION 

+ 
The so lu t ion  f o r  In- was shown t o  be of t h e  form of equation (17). To 

g e t  t he  rela$ions among the  constants i n  t h e  l i n e a r  p a r t  of t he  s o l u t i o n  t h e  
funct ion fn- + fn-k i s  s u b s t i t u t e d  i n t o  equations (11) and (12 ) .  The 
following equations are obtained: 

4- 

-h0 - + h l -  + fo- + ho-k - fo+ + ho+tr; = 0 (A2) 

and for n 2 1 

nhn-= + + (2n + l )hn+  + ( n  + l ) h n + l  + + 2(2n + l ) ( f n  + + h, + 6) = 0 (A3) 

nhi-l - (2n + l ) h n -  + ( n  + l)hi+l + 2(2n + l)(fn- + hn-S) = 0 (-44) 

I n  equations (Al) through (Ah) t h e  constant p a r t s  and t h e  p a r t s  involving 
5 a r e  equated sepa ra t e ly  t o  zero. From (A3) and (Ah) 

+ hn- = 0 f o r  n - > 1 

+ 
fn- = 0 f o r  n > 2 - 

Then f o r  n = 1, (A3) and (A4) are 

+ + 6fl+ = 0 
hO 

ho- + 6~1- = 0 

From (Al) and (A2) 
- 

(A91 

M-0) 

+ ho - ho = 0 

ho + f o  - fo = 0 

+ + 

- + + 

There are s i x  nonzero values of 
are four r e l a t i o n s  among these  constants.  The o the r  two r e l a t i o n s  needed t o  
solve f o r  t he  constants come from t h e  boundary condi t ions.  

hn- and fn-. Equations ( A 7 )  through ( A l O )  

16 



To obtain the  r e l a t i o n s  among the constants i n  the  exponential  p a r t  of 
t he  so lu t ion  and t o  determine the  exponents, A i ,  the  funct ion aig '(Ai)e-S/Ai 
i s  s u b s t i t u t e d  i n t o  equations (11) and (12) .  
seen t h a t  f o r  t h i s  funct ion aign'(Ai) i s  equal t o  dn-(Ai). The coe f f i c i en t  
go+(Ai) i s  assigned the  value u n i t y  for a l l  i. The coe f f i c i en t s  ai ,  which 
are f i x e d  by the  boundary values f o r  In', may be canceled from the  equations 
which result from the  above subs t i tu t ion .  These equations are 

From equ+ation (17) it can be 

It i s  he lpfu l  now t o  note t h a t  equations (Al3) and (Al4) have the  same form as 
the  recurrence formulas f o r  two l i n e a r l y  independent sets of functions; the 
Legendre polynomials of t he  f i r s t  kind, Pn, and the  nonsingular p a r t  of t he  
Legendre funct ions of the  second kind, Wn-l ( see  r e f .  3, p. 249). 
t ionships  are 

These r e l a -  

n ~ , - , ( 2 ~  T 1) + ( n  + ~ ) P ~ + ~ ( P A  T 1) - (2A T 1 ) ( 2 n  + 1 ) ~ n ( 2 ~  T 1) = o 
(A16 1 

n ~ n - 2 ( 2 ~  T 1) + ( n  + 1 ) ~ n ( 2 ~  T 1) - ( 2 ~  T l ) ( 2 n  + 1 ) ~ , - , ( 2 ~  T 1) = o 
w-7)  

It i s  t o  be understood t h a t  the upper signs are t o  be used together  and 
l ikewise the  lower signs.  
wri te  the gnL as l i n e a r  combinations of  t he  Pn and the  Wn-=. 

Because of (~16) and (Al7), it must be possible  t o  

(M-8) 
+ + 

gn+(Ai) = A P,(2Ai - 1) - B Wn-,(2Ai - 1) 



. 
Equations (A18) and (Al9) define r e l a t i o n s  among t h e  gn' terms. If t h e  
constants 
generate a l l  of the  values of 

A+, A-, B', and B- and the  A i  are known, then it i s  possible t o  + 
gn-. 

The assumption t h a t  go+ i s  un i ty  i s  equivalent  t o  s e t t i n g  A' equal  t o  
uni ty .  
and (Alg) and the  values of 
obtained: 

For n < 0, Wn-,(2A~ k 1) i s  se t  equal  t o  zero.  From equations (m8) 
gn are Po, P1, and Wo, t he  f i r s t  f e w  values  of 

If equations (A20) are subs t i t u t ed  i n t o  equations ( A l l )  and (Al2) ,  the 
following two equations a r e  obtained. 

+ 
B = B- (A21 1 
B- = Ai(A- + 1) 

Two addi t iona l  conditions on the  constants  
equation ( ~ 5 ) .  

B+, A-,  and B- are obtained from 

Equations ( A 2 l )  through (A24) are s u f f i c i e n t  t o  determine the  th ree  constants  
B', A-, and B- and the  exponents Ai 

A- .  
Subs t i tu te  equations (A21) and (-4.22) i n t o  equat ion (A24) and solve f o r  

- hiwN(2Ai + 

A =  p~+,.(2Ai + 1) - hiWN(2h-i + 1) (U5) 

From equation (A22) 

18 



Equations (A231 and (A26) combine t o  give 

Equation (A27) i s  a polynomial which defines the  2N exponents Ai i n  t he  
s o l u t i o n  (eq. (17)). A s  proved previously all hi are r e a l .  Although equa- 
t i o n  (A27) apparent ly  has 2(N + l) roots ,  it i s  found- tha t  the c o e f f i c i e n t s  
of t he  two highest  power terms i n  the  polynomial always cancel. This can be 
e a s i l y  seen by s u b s t i t u t i n g  the  general  terms f o r  
ref.  12 )  i n t o  (A27). Note t h a t  there  are separate values of B+, B-, and A- 
assoc ia ted  with each A i .  

Pn and Wn-l ( see ,  e.g.  

I n  summary, it i s  found t h a t  equation (A27) defines  the  exponents Ai. 
A value of 
value of Ai. The expression f o r  Ink i s  

B+, A-, and B-, and a complete s e t  of gn’(hi) correspond t o  each 

+ + O f  the  six nonzero constants,  fn- and hn-, four may be considered as de ter -  
mined i n  terms of t he  other  two, due t o  equations (A7)  through (Al.0). 
two undetermined constants,  fn- and hn-, and the  2N values of 
mined by the  boundary conditions.  
necessary 2(N + 1) boundary conditions.  

The 
are de ter -  + + 

a i  
Equations (20) through (23) a re  the  
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Figure 1.- Para l le l  w a l l s  separated by absorbing medium. 
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Figure 2.- Normalized f lux  vs. optical thickness. 
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